92 research outputs found

    B\"uchi Complementation and Size-Change Termination

    Full text link
    We compare tools for complementing nondeterministic B\"uchi automata with a recent termination-analysis algorithm. Complementation of B\"uchi automata is a key step in program verification. Early constructions using a Ramsey-based argument have been supplanted by rank-based constructions with exponentially better bounds. In 2001 Lee et al. presented the size-change termination (SCT) problem, along with both a reduction to B\"uchi automata and a Ramsey-based algorithm. The Ramsey-based algorithm was presented as a more practical alternative to the automata-theoretic approach, but strongly resembles the initial complementation constructions for B\"uchi automata. We prove that the SCT algorithm is a specialized realization of the Ramsey-based complementation construction. To do so, we extend the Ramsey-based complementation construction to provide a containment-testing algorithm. Surprisingly, empirical analysis suggests that despite the massive gap in worst-case complexity, Ramsey-based approaches are superior over the domain of SCT problems. Upon further analysis we discover an interesting property of the problem space that both explains this result and provides a chance to improve rank-based tools. With these improvements, we show that theoretical gains in efficiency of the rank-based approach are mirrored in empirical performance

    Complementation of Rational Sets on Scattered Linear Orderings of Finite Rank

    Get PDF
    International audienceIn a preceding paper, automata have been introduced for words indexed by linear orderings. These automata are a generalization of automata for finite, infinite, bi-finite and even transfinite words studied by Buchi Kleene's theorem has been generalized to these words. We show that deterministic automata do not have the same expressive power. Despite this negative result, we prove that rational sets of words of finite ranks are closed under complementation

    Propositional Dynamic Logic for Message-Passing Systems

    Full text link
    We examine a bidirectional propositional dynamic logic (PDL) for finite and infinite message sequence charts (MSCs) extending LTL and TLC-. By this kind of multi-modal logic we can express properties both in the entire future and in the past of an event. Path expressions strengthen the classical until operator of temporal logic. For every formula defining an MSC language, we construct a communicating finite-state machine (CFM) accepting the same language. The CFM obtained has size exponential in the size of the formula. This synthesis problem is solved in full generality, i.e., also for MSCs with unbounded channels. The model checking problem for CFMs and HMSCs turns out to be in PSPACE for existentially bounded MSCs. Finally, we show that, for PDL with intersection, the semantics of a formula cannot be captured by a CFM anymore

    A Complete Axiom System for Propositional Interval Temporal Logic with Infinite Time

    Full text link
    Interval Temporal Logic (ITL) is an established temporal formalism for reasoning about time periods. For over 25 years, it has been applied in a number of ways and several ITL variants, axiom systems and tools have been investigated. We solve the longstanding open problem of finding a complete axiom system for basic quantifier-free propositional ITL (PITL) with infinite time for analysing nonterminating computational systems. Our completeness proof uses a reduction to completeness for PITL with finite time and conventional propositional linear-time temporal logic. Unlike completeness proofs of equally expressive logics with nonelementary computational complexity, our semantic approach does not use tableaux, subformula closures or explicit deductions involving encodings of omega automata and nontrivial techniques for complementing them. We believe that our result also provides evidence of the naturalness of interval-based reasoning
    • …
    corecore